电压放大器在双核复合液滴融合实验中的应用
实验名称:双核复合液滴融合实验
研究方向:微流控技术是近些年发展起来的新兴技术,它将微纳米通道集成到几平方厘米的芯片上,并通过施加外加物理场,对通道中的流体及流体中分散的微纳颗粒进行控制和操纵。由于微机电系统领域的迅速发展,如今人们借助于微机电系统加工技术已经能够制备出各种高集成、跨尺度和高可控性的微流控芯片,因此它被广泛用于生物医疗、新型材料和前沿工程等多个领域。液滴微流控作为微流控技术的一个重要分支,在微流控芯片中通过控制互不相溶的两相或者多相流体来制备和操纵独立单分散的液滴单元,主要被用于生化分析、微纳材料合成和精密微反应器等前沿领域,例如单细胞检测、生物大分子分析和纳米颗粒制备等。
实验目的:研究在固定电导率下,电信号频率增大液滴融合所需要的电压情况。确定不同参数下液滴融合区域,在不同电导率下液滴的电压和频率融合区域,为实际应用中的参数选择提供了可靠的参考
测试设备:荧光显微镜、信号发生器、微量注射泵、ATA-2021高压放大器、数字摄像机、微流控芯片。
实验过程:信号发生器施加不同频率的正弦信号以后,通过功率放大器放大到10~60V,随机排布的液滴首先发生旋转,液滴两内核的连心线与电场方向趋近平行。随后液滴内核发生融合,但是外壳在合适的电压下依然保持完好。电压过大,液滴的外壳也会破裂,导致液滴可控融合失败。然而,液滴外壳破裂为内核的可控释放提供了方法。融合以后撤掉外加电信号,由于中间相相比内相黏度较大,内核在刚刚融合以后呈椭圆状,随后在表面张力的作用下恢复成球形。本实验中使用内相和外相电导率均为8mS/m,电场频率为10kHz~500kHz,幅值为40V。
实验结果:实验发现液滴在电信号频率10kHz至400kHz范围内可以发生融合,并且低压阈值和高压阈值的变化趋势类似。在频率小于140kHz时,低压阈值和高压阈值均随着频率的升高而升高,曲线斜率逐渐增大。当频率大于140Khz时,高压阈值达到平台期,不再随频率增大而升高,而低压阈值继续随频率的增大而增大,最后低压与高压阈值在频率约为400kHz处相交。对于特定的电场频率,液滴内核融合存在一个特定的电压范围,。实验结果显示液滴融合的电压范围Uop先增大后减小,在频率为100kHz时达到电压范围最大值22.5V。频率100kHz是此实验条件下液滴融合的最佳频率。
这种电压随频率升高的现象可以由两种效应解释。第一,液滴内核表面的流动由中间相的南北极向两核之间流动,从而阻碍液滴之间的融合,这种流动随着电信号频率增大而增强,从而对融合起到抑制作用。第二,相同电压下液滴内核的变形随着频率增大而减小,因此为了达到相同的变形量,频率增大时电压也需要相应的增大才能进一步驱动内核之间的薄膜变薄到一定的程度,使得液滴融合。
电压放大器推荐:ATA-2021高压放大器
图:ATA-2021高压放大器指标参数
西安88858cc永利官网是专业从事功率放大器、高压放大器、功率信号源、前置微小信号放大器、高精度电压源、高精度电流源等电子测量仪器研发、生产和销售的高科技企业,为用户提供具有竞争力的测试方案。Aigtek已经成为在业界拥有广泛产品线,且具有相当规模的仪器设备供应商,样机都支持免费试用。如想了解更多功率放大器等产品,请持续关注88858cc永利官网官网www.aigtek.com或拨打029-88865020。
原文链接:/news/4312.html